1,006 research outputs found

    Covariant Coordinate Transformations on Noncommutative Space

    Get PDF
    We show how to define gauge-covariant coordinate transformations on a noncommuting space. The construction uses the Seiberg-Witten equation and generalizes similar results for commuting coordinates.Comment: 11 pages, LaTeX; email correspondence to [email protected]

    Scalar Field Theory at Finite Temperature in D=2+1

    Get PDF
    We discuss the ϕ6\phi^6 theory defined in D=2+1D=2+1-dimensional space-time and assume that the system is in equilibrium with a thermal bath at temperature β1\beta^{-1}. We use the 1/N 1/N expansion and the method of the composite operator (CJT) for summing a large set of Feynman graphs.We demonstrate explicitly the Coleman-Mermin-Wagner theorem at finite temperature.Comment: 12 pages, 1 figure. To be published in Journal Mathematical Physics, typos adde

    Conformal Symmetry on the Instanton Moduli Space

    Full text link
    The conformal symmetry on the instanton moduli space is discussed using the ADHM construction, where a viewpoint of "homogeneous coordinates" for both the spacetime and the moduli space turns out to be useful. It is shown that the conformal algebra closes only up to global gauge transformations, which generalizes the earlier discussion by Jackiw et al. An interesting 5-dimensional interpretation of the SU(2) single-instanton is also mentioned.Comment: 7 pages, LaTeX, version to appear in J. Phys. A: Math. Ge

    Coordinate noncommutativity in strong non-uniform magnetic fields

    Full text link
    Noncommuting spatial coordinates are studied in the context of a charged particle moving in a strong non-uniform magnetic field. We derive a relation involving the commutators of the coordinates, which generalizes the one realized in a strong constant magnetic field. As an application, we discuss the noncommutativity in the magnetic field present in a magnetic mirror.Comment: 4 page

    Calorons in Weyl Gauge

    Get PDF
    We demonstrate by explicit construction that while the untwisted Harrington-Shepard caloron AμA_\mu is manifestly periodic in Euclidean time, with period β=1T\beta=\frac{1}{T}, when transformed to the Weyl (A0=0A_0=0) gauge, the caloron gauge field AiA_i is periodic only up to a large gauge transformation, with winding number equal to the caloron's topological charge. This helps clarify the tunneling interpretation of these solutions, and their relation to Chern-Simons numbers and winding numbers.Comment: 10 pages, 10 figures, a sign typo in equation 27 is correcte

    Canonical Formalism for a 2n-Dimensional Model with Topological Mass Generation

    Full text link
    The four-dimensional model with topological mass generation that was found by Dvali, Jackiw and Pi has recently been generalized to any even number of dimensions (2n-dimensions) in a nontrivial manner in which a Stueckelberg-type mass term is introduced [S. Deguchi and S. Hayakawa, Phys. Rev. D 77, 045003 (2008), arXiv:0711.1446]. The present paper deals with a self-contained model, called here a modified hybrid model, proposed in this 2n-dimensional generalization and considers the canonical formalism for this model. For the sake of convenience, the canonical formalism itself is studied for a model equivalent to the modified hybrid model by following the recipe for treating constrained Hamiltonian systems. This formalism is applied to the canonical quantization of the equivalent model in order to clarify observable and unobservable particles in the model. The equivalent model (with a gauge-fixing term) is converted to the modified hybrid model (with a corresponding gauge-fixing term) in a Becchi-Rouet-Stora-Tyutin (BRST)-invariant manner. Thereby it is shown that the Chern-Pontryagin density behaves as an observable massive particle (or field). The topological mass generation is thus verified at the quantum-theoretical level.Comment: 29 pages, no figures, minor corrections, published versio

    Quantum-mechanical model for particles carrying electric charge and magnetic flux in two dimensions

    Get PDF
    We propose a simple quantum mechanical equation for nn particles in two dimensions, each particle carrying electric charge and magnetic flux. Such particles appear in (2+1)-dimensional Chern-Simons field theories as charged vortex soliton solutions, where the ratio of charge to flux is a constant independent of the specific solution. As an approximation, the charge-flux interaction is described here by the Aharonov-Bohm potential, and the charge-charge interaction by the Coulomb one. The equation for two particles, one with charge and flux (q,Φ/Zq, \Phi/Z) and the other with (Zq,Φ-Zq, -\Phi) where ZZ is a pure number is studied in detail. The bound state problem is solved exactly for arbitrary qq and Φ\Phi when Z>0Z>0. The scattering problem is exactly solved in parabolic coordinates in special cases when qΦ/2πcq\Phi/2\pi\hbar c takes integers or half integers. In both cases the cross sections obtained are rather different from that for pure Coulomb scattering.Comment: 12 pages, REVTeX, no figur

    Dynamical masses of quarks in quantum chromodynamics

    Full text link
    Using Dyson-Schwinger equations we obtain an ultraviolet asymptotics for the dynamical mass of quark in QCD. We also determine a numerical value for the \pi meson decay constant f_\pi.Comment: Electronic version of the published paper, latex, 4 page

    Only hybrid anyons can exist in broken symmetry phase of nonrelativistic U(1)2U(1)^{2} Chern-Simons theory

    Full text link
    We present two examples of parity-invariant [U(1)]2[U(1)]^{2} Chern-Simons-Higgs models with spontaneously broken symmetry. The models possess topological vortex excitations. It is argued that the smallest possible flux quanta are composites of one quantum of each type (1,1)(1,1). These hybrid anyons will dominate the statistical properties near the ground state. We analyse their statistical interactions and find out that unlike in the case of Jackiw-Pi solitons there is short range magnetic interaction which can lead to formation of bound states of hybrid anyons. In addition to mutual interactions they possess internal structure which can lead upon quantisation to discrete spectrum of energy levels.Comment: 10 pages in plain Latex (one argument added, version accepted for publication in Phys.Rev.D(Rapid Communications)
    corecore